|
公司基本資料信息
|
采用超臨界CO2萃取技術生產小米糠油,該工藝操作壓力較高,設備規模小、投資大,生產成本太高,導致油的成本無法被市場認可??烧{節壓力、溫度和引人夾帶劑等調整超界流體的溶解能力,并可通過逐漸密度交溫度和壓力把萃取組分引人到希望的產品中。低溫萃取技術主要溶劑為丁烷,是食品加工業一項新的萃取技術,具有溶劑沸點低,常溫常壓下氣態,容易揮發的特點。用低溫萃取米糠油是利用其特性,從原料中萃取、分離小米糠油。
采用成熟的工藝技術挖掘農產品的內在價值,走綜合利用、合理利用、循環利用的發展之路,針對小米糠油的提取技術實現重大突破,采用正丁烷低溫萃取技術,解決了產物萃取過程的熱敏性問題,實現了產物提取的規模化生產。亞臨界流體是指某些化合物在溫度高于其沸點但低于臨界溫度,且壓力低于其臨界壓力的條件下,以流體形式存在的該物質。通過該技術,可以將小米糠深加工,提取小米糠油、多糖等,為小米產業的健康發展及農產品綜合開發利用創造了良好的機會。
低溫萃取技術溶劑的性質及選擇
當流體的溫度和壓力處于它的臨界溫度和臨界壓力以上時,即使繼續加壓丙烷,也不會液化,只是密度增加而已,它既具有類似液體的某些性質,又保留了氣體的某些性能,這種狀態的流體也稱為亞臨界流體。亞臨界環境下萃取,不破壞熱敏性成分、目的物被視為綠色、前景廣闊的一項變革性技術。低溫萃取技術是利用流體在亞臨界狀態下溶解待分離的液體或固體混合物而使萃取物從混合物中分離出來。
所選溶劑具有若干的性質,密度比氣體大數百倍,與液體的密度接近。提取溫度不能太高,特別是熱敏性物料的提取,要減少對成分的破壞。其粘度則比液體小得多,仍接近氣體的粘度。既具有液體對物質的高溶解度的特性,又具有氣體易于擴散和流動的特性。對于萃取和分離更有用的是,在臨界點附近溫度和壓力的微小變化會引起溶劑密度的顯著變化,從而使亞臨界流體溶解物質的能力發生顯著的變化。
溶劑與被萃取物料接觸,使物料中的某些組分(稱萃取物),在常溫和適當壓力下(0.3MPa—0.8MPa)丙烷,用溶劑逆流萃取油料料胚,然后使混合油(溶劑與萃取物的混合物)和脫脂物料中的溶劑減壓氣化,與物料中其他組分(萃余物)分離,之后通過降低壓力或調節溫度,降低溶劑的密度,從而降低其溶解能力,使溶劑解析出其所攜帶的萃取物,達到萃取分離的目的。具體操作步驟如下:烘干后的小麥胚芽靠刮板和絞龍進入萃取罐,抽真空后將溶劑丁烷打到罐內,浸泡30分鐘,混合油進到蒸發系統去蒸發或打到別的萃取罐逆流萃取。
低溫萃取技術與一般液體萃取技術相比,萃取速率和范圍更為理想。在功能性和藥用植物提取生產中的應用:以液氨為溶劑亞臨界萃取脫脂豆粕,可以一步法生產濃縮蛋白,克服了醇法生產的蛋白變性和酒精能耗高的問題。萃取過程是通過溫度和壓力的調節來控制與溶質的親和性而實現分離的。溶劑主要應用液化丁烷和丙烷。該溶劑中組分的沸點大多在0℃以下,其中丙烷沸點-42.07℃丙烷,丁烷的沸點為-0.5℃,在常溫常壓下為氣體,加壓后為液態。
超臨界流體的溶劑強度取決于萃取的溫度和壓力?;钊跉飧變茸魍鶑瓦\動時,不斷地改變氣缸兩端的容積,一端容積擴大吸入氣體,另一端容積縮小排出氣體。利用這種特性,只需改變萃取劑流體的壓力和溫度,可以把樣品中的不同組分按在流體中溶解度的大小,先后萃取出來,在低壓下弱極性的物質先萃取,隨著壓力的增加,極性較大和大分子量的物質與基本性質,所以在程序升壓下進行超臨界萃取不同萃取組分,同時還可以起到分離的作用。
溫度的變化體現在影響萃取劑的密度與溶質的蒸汽壓兩個因素,在低溫區(仍在臨界溫度以上),溫度升高降低流體密度,而溶質蒸汽壓增加不多,因此,萃取劑的溶解能力時的升溫可以使溶質從流體萃取劑中析出,溫度進一步升高到高溫區時,雖然萃取劑的密度進一步降低,但溶質蒸汽壓增加,揮發度提高,萃取率不但不會減少反而有增大的趨勢。亞臨界值萃取技術性問世于1989年,是經歷了三十年發展趨勢起來的一種加工工藝方式,現階段已運用到食用油、蛋白質、黑色素、單方精油、中藥材等幾十種原材料。