鍍膜靶材是通過磁控濺射、多弧離子鍍或其他類型的鍍膜系統在適當工藝條件下濺射在基板上形成各種功能薄膜的濺射源。簡單說的話,靶材就是高速荷能粒子轟擊的目標材料,不同功率密度、不同輸出波形、不同波長的激光與不同的靶材相互作用時,會產生不同的殺傷破壞效應。超純金屬超純的純度也可以用剩余電阻率來測定,其值約為2×10-5。
各種類型的濺射薄膜材料在半導體集成電路(VLSI)、光碟、平面顯示器以及工件的表面涂層等方面都得到了廣泛的應用。20世紀90年代以來,濺射靶材及濺射技術的同步發展,極大地滿足了各種新型電子元器件發展的需求。
區域提純后的金屬鍺,其錠底表面上的電阻率為30~50歐姆厘米時,純度相當于8~9,可以滿足電子器件的要求。但對于雜質濃度小于[KG2]10原子/厘米[KG2]的探測器級超純鍺,則尚須經過特殊處理。
由于鍺中有少數雜質如磷、鋁、硅、硼的分配系數接近于1或大于1,要加強化學提純方法除去這些雜質,然后再進行區熔提純。磁光盤需要的TbFeCo合金靶材還在進一步發展,用它制造的磁光盤具有存儲容量大,壽命長,可反復無接觸擦寫的特點。電子級純的區熔鍺錠用霍爾效應測量雜質(載流子)濃度,一般可達10~10原子/厘米。經切頭去尾,再利用多次拉晶和切割尾,一直達到所要求的純度(10原子/厘米),這樣純度的鍺(相當于13)所作的探測器,其分辨率已接近于理論數值。
各種純度鋁中的雜質含量及剩余電阻率如表2所示。當通過用紫外線照射其表面或者使其暴露于臭氧中,使導電橡膠輥的表面上形成氧化膜時,導電橡膠輥表面的氧濃度變得較高。超純金屬超純的純度也可以用剩余電阻率來測定,其值約為2×10-5。現代科學技術的發展趨勢是對金屬純度要求越來越高。因為金屬未能達到一定純度的情況下,金屬特性往往為雜質所掩蓋。不僅是半導體材料,其他金屬也有同樣的情況,由于雜質存在影響金屬的性能。
鎢過去用作燈泡的燈絲,由于脆性而使處理上有困難,在適當提純之后,這種缺點即可以克服(鎢絲也有摻雜及加工問題)。
金屬靶材材質分為:
鎳靶、Ni、鈦靶、Ti、鋅靶、Zn、鉻靶、Cr、鎂靶、Mg、鈮靶、Nb、錫靶、Sn、鋁靶、Al、銦靶、In、鐵靶、Fe、鋯鋁靶、ZrAl、鈦鋁靶、TiAl、鋯靶、Zr、鋁硅靶、AlSi、硅靶、Si、銅靶Cu、鉭靶T、a、鍺靶、Ge、銀靶、Ag、鈷靶、Co、金靶、Au、釓靶、Gd、鑭靶、La、釔靶、Y、鎢靶、w、不銹鋼靶、鎳鉻靶、NiCr、鉿靶、Hf、鉬靶、Mo、鐵鎳靶、FeNi、鎢靶、W等。工業上大量使用的是工業純稀土金屬,較高純度的稀土金屬主要供測定物理化學性能之用。