工程用的桁架節點,一般是具有一定剛性的節點而不是理想的鉸接節點,由于節點剛性的影響而出現的桿件彎曲應力和軸向應力稱為次應力。計算次應力需考慮桿件軸向變形,可用超靜定結構的方法或有限元法求解。
空間桁架由若干個平面桁架所組成,可將荷載分解成與桁架同一平面的分力按平面桁架進行計算,或按空間鉸接桿系用有限元法計算。
根據桁架桿件所用的材料和計算所得出的內力,選擇合適的截面應能保證桁架的整體剛度和穩定性以及各桿件的強度和局部穩定,以滿足使用要求。
桁架種類
桁架可按不同的特征進行分類。
一、根據桁架的外形分為:
1.平行弦桁架(便于布置雙層結構;利于標準化生產,但桿力分布不夠均勻);
2.折弦桁架(如拋物線形桁架梁,外形同均布荷載下簡支梁的彎矩圖,桿力分布均勻,材料使用經濟,構造較復雜);
3.三角形桁架(桿力分布更不均勻,構造布置困難,但斜面符合屋頂排水需要)。
二、以桁架幾何組成方式分:
1.簡單桁架(由一個基本鉸結三角形依次增加二元體組成);
2.聯合桁架(由幾個簡單桁架按幾何不變體系的簡單組成規則聯合組成);
3.復雜桁架(不同于前兩種的其它靜定桁架)。
三、按所受水平推力分:
1.無推力的梁式桁架(與相應的實梁結構比較,掏空率大,上下弦桿抗彎,腹桿主要抗剪,受力合理,用材經濟);
2.有推力的拱式桁架(拱圈與拱上結構聯為一體整體性好,便于施工,跨越能力強,節省鋼材料)。
內力特征
受力特點是結構內力只有軸力,而沒有彎矩和剪力。這一受力特性反映了實際結構的主要因素,軸力稱桁架的主內力。實際結構(如鋼筋混凝土屋架,鉚(栓)接或焊接的鋼桁架橋)中由于結點的非理想鉸結等原因,還同時存在微小的彎矩和剪力(理想鉸接沒有),對軸力也有很小的影響(因結點剛性和桁架桿橫截面積與慣性矩比值的大小而異,一般減小5%~0.1%),稱為次內力。